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ABSTRACT

N. a. s. c. of complete controllability of a class

linear time-invariant delay-differential system are

presented, and the result is expressed in an algebraic

form.
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A CONTRIBUTION TO THE CONTROLLABILITY

OF TIME-LAG SYSTEMS

1. INTRODUCTION

Consider the system

x (t)=Ax(t)+Bx(t-h)+Cu (t), t>O (1)

where x (t) E Rn , A and B are constant n x n matrices. C is a constant n x m

matrix, and u (t) is a continuous m-dimensional vector, the control function; h is

a positive number, the delay. This paper concerns a property of "complete

controllability" which is a particular case of complete controllability to an

arbitrary function. The latter concept has been studied by V. M. Popov [6],

who gave a necessary and sufficient condition of controllability in this sense in

an algebraic form.

In this paper we shall show that the necessary condition of complete control-

lability to an arbitrary function is also a necessary condition of the particular

property of complete controllability provided A and B satisfy some additional

conditions. If the rank of the matrix B is 1 or n and the pair (A, B) is completely

controllable, then the above additional conditions are automatically satisfied

and in these cases the n. a. s. c. of controllability to an arbitrary function is

also a n. a. s. c. of complete controllability. Earlier works on the above sub-

ject were done by F. M. Kirillova and C. V. Curacova [8], and L. Weiss [5] .

L. Weiss also gave a necessary and sufficient condition of controllability involv-

ing functional condition.

1
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2. DEFINITIONS

The use of operator symbolism is of some use in the solution of delay-

differential equations. We introduce the operators s and z by the relations

s x (t) (2)
dt

z x (t)= x (t - h). (3)

For any real numbers k and co, we define

(k z) x (t) = k x(t - wh) (4)

(k s) ° x (t) = k d x (t) (5)
d t °

We define the sums and products of these operators in the usual way:

(s + z) X (t) = S X (t) + z X (t)(6)

(s z) x (t) = s (z x (t)), (7)

etc.

Two operators are called equal, if when applied to an arbitrary function, they

produce the same result. With these definitions, the commutative, associative,

and distributive laws hold. It can be shown that

Zc1 Z2 ( 2 .l +W2 (8)
2 x(t) z x(t) x (t): X (t -(W1 + c2) h).

We introduce the matrix r (s), given by

2
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r (s) = (s I - A)-' B= (S) (9)
det (s I -A)

where p (s) is a n x n matrix each of whose elements are polynomials in s of

degree less than or equal to (n - 1).

The set of all real functions f: [t, t 2] - Rn having continuous kth deriva-

tives is said to belong to Ck [t 1, t 2 ] 

Let us introduce the operator

L (t; f (t - h)), t, I t < t2,

f (') e C° [tl - h, t 2 - hj,

which is defined as follows

(10)
L (t; f (t - h)) _p (s) F (t - h); tl < t < t 2 '

where F (.) e Cn [t 1 -h, t
2

- h] and satisfies the differential equation

det (s I - A) F(t - h) = f (t - h); t 1 • t < t
2

and p (s) is defined in equation (9).

If g (t) e C° [- h, 0] and

g (t) = det (s I - A) (t), > n, -h t < 0,

then
L (t; g (t - h)) = p (s) det (s I - A) 1 (t - h), (11)

0 < t h.

3
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We define L 2 (t; f (t - h)) by the following relation

(12)
L2 (t; f (t - 2 h)) A L (t; fl (t - h)); t, < t - t 2,

where the function fl (.): [t1 - h, t 2 - h] -- Rn is given by

(13)
fl (t) = L (t; f (t - h)), t 1 - h I t t 2 - h

and the operator L (t; f (.)) is defined as above. Combining equations (12) and

(13) we have

(14)
L2 (t; f (t - 2 h)) = L (t; L (t - h; f (t - 2 h))), t 1 < t t t 2.

In general we define

(t; f (t - (r + 1) h)), tl < t < t
2

by the relation

(15)
L

r +

l (t; f (t -(r + l)h)) A L (t; fr (t -h)), t1 • t t

where fr (t) is given by

(16)
fr (t) = L' (t; f (t - r h)).

By L (0; g (t - h)) we shall denote the value of L (t; g (t - h)) at t = 0, and simi-

larly by L3 (2h; g (t - 3h)) we shall denote the value of L3 (t; g (t - 3h)) at t =

2h etc. With obvious modifications the domain of L (t; g (t - h)) can be extended

to a matrix function.

4
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We introduce the expression G (s, z) strongly related to the transfer-

function of (1) by the following relation

G (s, z) = (s I-A-B z)- 1 C (18)

where s, z are two auxiliary variables. We observe that the usual transfer-

function of (1) is

(19)G (s) = G (s, e-Sh).

Using explicit expression of the matrix (sI - A - Bz)
- 1 C, we can rewrite

equation (18) as

(P(s, z)( (S) v (z), P2 (s) v (Z), ' Pm (s) v (z)) (20)G(s, z) = (s I - A-B z)- 1 C=
det (s I -A-B z)

where v (z) is the column vector

z

V (Z) Z2 (21)

-1

and p
j
(s), j = 1, 2, . .. , m are polynomial matrices of the form

n-I

p (s) Pji Si,
i=O

5
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where Pi j ' i = 0, 1, . . ., (n - 1) are constant n x n matrices.

Complete Controllability

The system (1) is called completely controllable if for every e > 0, (E < h),

there exists a number T 2 h and a continuous control function u (t), t e [0, T],

such that the corresponding solution x (t; g) of equation (1) for the initial function

g e CO [- h, 0] satisfies the target condition

x (t; g) = 0, t E [T - h + E, T].

Finally, to simplify the calculations, we introduce the notation

A (s) = det (s I - A). (22)

3. REPRESENTATION FOR THE SOLUTION OF EQUATION (1)

In this section we shall obtain the representation for the solution of equation

(1) in terms of operators introduced in the previous section, and the representa-

tion is obtained by combining the results obtained in [6] and [2].

Equation (1) can be expressed as

(s I-A-B z) x (t) = C u (t), t >. (23)

Let

x (t) = Wl (t) + c2 (t) + ..... + Wm (t).

Then the above equation can be expressed as

6



f• [(s I - A - B z) ci(t)-Ci ui (t)] = 0, (24)

where Ci, i = 1, 2, ... , m are the m-columns of the n x m matrix C and ul, u 2 ,

... , u
m

are the m- components of the column vector u (t).

Multiplying equation (20) on the left by (sI - A - Bz) x det (sI - A - Bz), we

obtain

(s I - A - B z) (Pl (s) v (z), P2 (s) v (z), ., Pm () v (z))
(25)

(C 1 , C2, .. , Cm)det (s I-A-B z).

The above relation is true for all s, z for which det (sI - A- Bz) J 0. However,

it can be shown as in [6] that the above relation is true for all s, z. Equation

(25) can also be written as

(s I- A - B z) Pi. (s) v (z) = Ci det (s I - A - B z),
(26)

i = 1, 2,..., m.

Let us consider the following-scalar delay-differential equations

det (s I - A - B z) 6i (t) = u i (t), t >0. ° i (t) = 0, t e [- n h, 0]

(27)
i=l, 2, *** m

and the functions

cwi (t) = Pi (s) v (z) fi (t), t > - h (28)

where 6, (t) are the solutions of equation (27) for the vanishing initial conditions.

7
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By virtue of relation (26), we observe that the wi (t), satisfy the differential

equations

(s I - A - B z) coi (t) = C
i

u
i
, t > O0

(29)
i=1, 2, ..., m

and the initial conditions

wi (t h)= z w i (t) = Pi (s) z v (z) :i (t) = 0, t E [0, hi
(30)

i = 1, 2, · , m.

Therefore the function

(t) = )i (t) = i (s) (z) i (t), t > (31)
i=l ilI

is the solution of equation (1) for the vanishing initial condition. Any general

solution of equation (1) will be given by the above considered particular solution,

plus a solution of the homogeneous equation, obtained from equation (1) for u =

0. Thus any solution of equation (1) can be expressed as

m

x (t) = pi (s) v () ) : i (t) + x (t; g), t > 0(32)
i= 1

where the !i(t) -are the solutions of equation (27), and x (t; g) is the solution

of equation (1) for u = 0 and the initial function

x (t) = g (t) =A (s) (t), t E [-h, 01

8
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. and is given by [2]

x (t; g) = pr (s) nA- (S) (t - r h) + [Wr(t, D) Xr ()]=0 ()

It E [(r,- 1) h, r hi,

where

d
D d

(34)
X () ) (D ) ) - p (D) -p r(D) A (D) P (T - h),

Wr (t, D) = Lr- (t; eA(t-(r-l)h))A r - l (D)

+ Lr
-

2 (t; eA(t-(r-2)h) )A r - l (D) +

+ L (t; eA(t-h)) Ar - 1 (D)

+ L r
- 2 (t; eA( t-(r-l)h)) Y1 (D) Ar- 2 (D)

+ Lr- 3 (t; eA(t- (r- 2 ) h)) Y1 (D) / r - 2 (D)

+ . .+ L (t; eA(t - 2h)) Y1 (D) Ar
- 2 (D)

+ L- 3 (t; A( t - ( r - )h)) y (D) Ar- 3 (D)

+ L - 4 (t; eA(t-(r-2)h)) y2 (D) Ar - 3 (D) +

+L (t; eA( t - 3h)) Y2 (D) r- 3 (D) +.

+ L2 (t; eA(t-(r-1)h)) Yr- 3 (D) A2 (D)

9
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+ L (t; eA( t - ( r - 2)h)) yr-3 (D) A2 (D)

+ L (t; eA( t - (r-l)h)) Yr-2 (D) A (D)

+ eA(t-(r-1)h) Yr-1 (D) + eA( t - (r - 2)h) Yr-2 (D) A (D)

+ eA(t-h) Y1 (D) Ar - 2 (D) +- eAt A r
- 1

(D), (35)

and Yr-1 (D) is given by the following recurrence relation

Yr-1 (D) = pr-1 (D) - Lr - 1 ((r - 1) h; eA(t
-
(r-l)h)) Ar-I(D)

L r - 2 ((r - 1) h; eA( t - (r -
l

) h)) Y1 (D) Ar - 2 (D)

Lr - 3 ((r - 1) h; eA( t
- (r-l)h)) Y2 (D) Ar-3 (D)

-. . . - L ((r - 1) h; eA(t
-

(r
-
l)h)) Yr- 2 (D), (36)

where p (D) and A (D) are defined in equations (9) and (22).

4. NECESSARY AND SUFFICIENT CONDITIONS OF COMPLETE

CONTROLLABILITY

In this section we shall present sufficient condition of complete control-

lability and show that the sufficient condition is also a necessary condition pro-

vided A and B satisfy some additional conditions.

Theorem 1

The sufficient condition of controlling any solution of equation (1) to the

target function W (t) = 0, t c [(n - 1) h + e, nh] is that there does not exist any

n-vector

10
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d (s) = d
o

+ s d1 + s2 d
2

+ .... sm d
m
,

where d o J 0, and do, d, d 2 , . ., dm are n-dimensional constant vectors, such

that

dT (s) G (s) --. (37)

The above condition is also necessary provided that

dT (S) pn (s) and dT(s) W
n

(t, D)

are not simultaneously zero.

Proof of Necessity

We prove by contradiction. Suppose that there exists a polynomial vector

d (s) such that

dT (s) G (s) = O,

and

dT (S) pn (s) and dT (s) W (t, D)

are not simultaneously zero, and any solution of equation (1) is controllable to

the target function, i.e.,

W (t) = O, t' e [(n - 1) h + e, n h . (38)

Combining equations (38) and (32), we have

m

0 =, pi (s) v (z) :i (t) + pn (S) A
4

-
n (s) qS(t - n h)

i=l

11
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+ [Wn (t, D) Xn (T ) ] To,t e [(n - 1) h + e, n h]-. (39)

Since dT (s) G (s) = 0 implies that

dT (s) Pi (s) = 0, i = 1, 2, · , m

we have from equation (39)

0 = dT (s) pn (s) A- tn(s) ( t - n h)

(40)

+ [dT (s) Wn (t, D) Xn (T)]T=
0

t E [(n - 1) h + , n h] .

Since dT (s) pn (s) and dT (s) Wn (t, D) are not simultaneously equal to zero, we

can choose ¢ e C [- h, 01, and hence the initial function g (.) e CO [- h, O],

such that

dT (s) pn (s) ht - n (t - n h)
(41)

+ [dT (s) W (t, D) Xn (T)].=0 o 0, t e [(n - 1) h + E, nh],

and hence a contradiction.

Proof of Sufficiency

Since dT (s) G (s) j 0, we have

dT (s) Pi (s) v (e - sh) . 0

for at least one i, say i = j. Therefore as in [6 ] it follows that det pj (s) # 0

and the remaining part of the proof of sufficiency follows as in [6] .

12
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Cor 1. If rank B = n, then the n. a. s. c. of complete controllability of the system

(1) is that there does not exist any non-zero n- vector d (s) = do + sd 1 + s2 d2

+ ... + s m d m, do 0 such that

dT (s) G (s) = 0.

Proof. Suppose that dT(s) pn(s) = o , where p(s) is defined in equation (9). We

observe that equation (9) and dT(s) pn(s) = 0, imply that

(42)(dOT + s d T + s 2 d T + . + sm d T ) (A r (s) + B)n = 0.

Dividing both sides of equation (42)

tain noting that r (s) - 0 as s - co,

by sm and taking limit as s - co, we ob-

dT Bn = 0.
nl

Equation (43) contradicts that rank B is

n. a. s. c. follows.

n and therefore dT (s) pn (s) + O,

Cor 2. If the pair (A, B) is completely controllable, and the rank of the matrix

B is one, then the n. a. s. c. of controllability of the system (1) is that there

does not exist any n- vector d (s)= d
o

+ sd + s 2 d2 + . .+ sm dm,d0 0, such

that

dT (s) G (s) = O.

Proof. Suppose that

dT (s) pn (s) = 0

dT (s) Wn (t, D) = 0

13
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(45)
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We observe that equations (44) - (45) imply that

dT (s) x (t; g) = 0, V g E C° [- h, O], t 2 (n - 1) h. (46)

Since rank B = 1, B can be expressed as

B = b cT, (47)

where b, c are n- vectors and cT denotes the transpose of the column vector c.

Now

dT (S) pn (s) = dT (S) (S I - A)- ' b c T pn-1 (48)

where p = cT (sI - A) - 1 b is a scalar quantity and not equal to zero, since the

pair (A, bcT) is completely controllable.

Therefore equation (48) implies that

dT(s) (s I -A)
-

bc T
= 0. (49)

Using equations (9) and (49) and taking limit as s - co, we obtain the following

equations

dT B = 0
m

dT B + d T AB = 0

dT B + dT AB + d T A2 B = 0
m-2 m-1 m

(50)

(51)

(52)

(53)dT B + dT A B + dT A2 B + . + dT Am-l B = OdTB+dTAB~dTA 2B+ ..... +dT Am-''B=0

(54)(dT+d A+dTA2+ ...... + dTAm) Aj B = O

j= 0, 1, 2, 3 .

14
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From equations (50) - (54) and (1), we observe that

dT (s) x (t; g) =dT (A)x(t; g), t > 0

and

si dT (s) x (t; g) = dT (A) Ai x (t; g), t > 0. (56)

Using Cayley-Hamilton theorem and equations (46), (55), (56), we observe that

det (s I - A) dT (A) x (t; g) = 0

(57)
V g E C°0 [- h, O], V t > 0

and

dT (A) x (t; g) = 0, t e [(n - 1) h, n h]
(58)

VgeC ° [-h, 0].

We observe that dT (A) x (t; g) satisfies the differential equation (57) for t > 0

and is identically zero in ((n - 1) h, nh) and therefore

dT (A) x (t; g) = 0, V t 0. (59)

But we could choose g such that

x (0; g) = d (A).

Hence from equation (59) we obtain

dT (A) d (A)= 0 (60)

which is a contradiction. Hence

d n (s) pn (S) and dT (s) W (t, D)

are not identically zero in this case and consequently follows the n. a. s. c. of

complete controllability.

15
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